A micromechanics finite-strain constitutive model of fibrous tissue
نویسندگان
چکیده
منابع مشابه
A Micromechanics Based Constitutive Model for Brittle Failure at High Strain Rates
The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, “The Damage Mechanics of Brittle Solids in Compression,” Pure Appl. Geophys., 133(3), pp. 489–521, and generalized by Deshpande and Evans 2008, “Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model,” J. Mech. Phys. Solids, 56(10), pp. 3077–3100. has been extended to allow for a m...
متن کاملA fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue
Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...
متن کاملA micromechanics-inspired constitutive model for shape-memory alloys
This paper presents a three-dimensional constitutive model for shape-memory alloys that generalizes the one-dimensional model presented earlier (Sadjadpour and Bhattacharya 2007 Smart Mater. Struct. 16 S51–62). These models build on recent micromechanical studies of the underlying microstructure of shape-memory alloys, and a key idea is that of an effective transformation strain of the martensi...
متن کاملRate dependent finite strain constitutive model of polyurea
Article history: Received 7 October 2009 Received in final revised form 7 October 2010 Available online 16 October 2010
متن کاملA Constitutive Model for Sands
In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the 
yield surface. In the present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mechanics and Physics of Solids
سال: 2011
ISSN: 0022-5096
DOI: 10.1016/j.jmps.2011.05.012